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ABSTRACT
In this paper, we address the problem of weakly-supervised
image parsing, whose aim is to automatically determine the
class labels of image regions given image-level labels only.
In the literature, existing studies pay main attention to the
formulation of the weakly-supervised learning problem, i.e.,
how to propagate class labels from images to regions given
an affinity graph of regions. Notably, however, the affinity
graph of regions, which is generally constructed in relatively
simpler settings in existing methods, is of crucial impor-
tance to the parsing performance due to the fact that the
weakly-supervised image parsing problem cannot be han-
dled within a single image, and that the affinity graph fa-
cilitates label propagation among multiple images. There-
fore, in contrast to existing methods, we focus on how to
make the affinity graph more descriptive through embed-
ding more semantics into it. We develop two novel graphs
by leveraging the weak supervision information carefully: 1)
Semantic graph, which is established upon a conventional
graph by utilizing the proposed weakly-supervised criteria;
2) Semantic hypergraph, which explores both intra-image
and inter-image high-order semantic relevance. Experimen-
tal results on two standard datasets demonstrate that the
proposed semantic graphs and hypergraphs not only cap-
ture more semantic relevance, but also perform significantly
better than conventional graphs in image parsing. More
remarkably, due to the complementariness among the pro-
posed semantic graphs and hypergraphs, the combination of
them shows even more promising results.

Categories and Subject Descriptors
I.4.6 [Image Processing and Computer Vision]: Seg-
mentation—pixel classification

General Terms
Algorithms, Experimentation, Performance
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1. INTRODUCTION
Image parsing, whose aim is to assign semantic labels to

image regions [28], is a fundamentally challenging problem
[17, 16, 36, 12]. Being a sort of fine-grained image analysis,
an effective image parsing system facilitates many higher-
level image understanding tasks, e.g., image editing [26] and
region-based image retrieval [39]. However, although the
goal of image parsing is to classify pixels, directly model-
ing pixels may lead to unreliable predictions due to the fact
that a single pixel contains little information. In order to
yield semantically consistent results, existing image parsing
approaches are generally based on image regions (aka, su-
perpixels).

In the literature, most image parsing methods suppose
that a training dataset with superpixel-level labels is given
and then either establish an appearance-based model which
propagates labels from training superpixels to test super-
pixels [35] or resort to non-parametric methods to transfer
labels from training images to query images [14]. However,
it is generally too laborious and time-consuming to annotate
superpixel-level labels manually. Fortunately, thanks to the
rapid spread of online photo sharing websites (e.g., Flickr),
a large amount of images with user-provided image-level la-
bels become available. These labels can be further refined
by modeling visual consistency and error sparsity [43]. In
contrast to superpixel-level labels, it is more challenging to
develop an image parsing algorithm based on image-level
labels only. In this paper, such a problem is called weakly-
supervised image parsing.

In traditional image parsing, labels are propagated from
training superpixels to test superpixels; however, in weakly-
supervised image parsing, the propagation is from images
to superpixels. To handle such a weakly-supervised learning
problem, several approaches have been proposed in the liter-
ature. For example, [17] has first proposed a bi-layer sparse
coding model for uncovering how an image or superpixel
could be reconstructed from superpixels of the entire image
repository, and then used the learned relevance to facilitate
label inference. What is more, [16] has developed a weakly-
supervised graph propagation model, where the final results
can be directly inferred by simultaneously considering su-
perpixel consistency, superpixel incongruity and the weak
supervision information. It can be observed that, superpixel
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Original superpixel

Superpixels from images containing label ‘bird’ or ‘grass’ which are most similar to the original superpixel:

Superpixels from images containing label ‘bird’ which are most similar to the original superpixel:

Superpixels from images containing label ‘sheep’ or ‘grass’ which are most similar to the original superpixel:

Superpixels from images containing label ‘sheep’ which are most similar to the original superpixel:

Original superpixel

Figure 1: Illustrations of our motivation in constructing semantic graphs by reducing the number of candidate
superpixels. An image is in a green box if its corresponding superpixel (which is bounded by a magenta closed
curve) is semantically relevant to (i.e., has the same ground-truth label with) the original superpixel, otherwise
it is in a red box.

graphs are necessary and important to the aforementioned
image parsing methods.
However, despite the effectiveness of the aforementioned

approaches, the superpixel graphs are constructed in rela-
tively simpler settings. These approaches are mainly based
on the assumption that a given superpixel from an image
can be sparsely reconstructed via the superpixels belonging
to the images with common labels, and that the sparsely
selected superpixels are relevant to the given superpixel. In
order to state conveniently, we define candidate superpixels
to be the set of superpixels which are possibly adjacent to
a given superpixel, where the adjacency denotes a non-zero
similarity in a superpixel graph. Under this definition, the
candidate superpixels of the above approaches are those be-
longing to the images which have common labels with the
image containing the given superpixel. Due to the large
number of candidate superpixels in these approaches, the
graph construction process tends to incur more semantically
irrelevant superpixels and thus the parsing performance is
degraded.
Therefore, it is crucial to construct a superpixel graph

with more semantic relevance. In order to handle this task,
we start from the following three observations:

• An ideal graph yields nearly perfect results. Suppose
there is an ideal graph, in which all pairs of seman-
tically relevant superpixels are adjacent, and all pairs
of semantically irrelevant superpixels are non-adjacent.
The parsing accuracy with such a graph is 99% (where
the 1% loss lies in the error of over-segmentation).

• Reducing the number of candidate superpixels is bene-
ficial. As shown by the illustrative examples in Fig. 1,
by reducing the number of candidate superpixels, the
graph can be made more descriptive. If all the can-
didate superpixels are selected correctly, the parsing
accuracy on MSRC-21 dataset is 89%.

• It is important to explore high-order semantic rele-
vance. For example, superpixels (usually more than
two) that are both visually similar and spatially adja-
cent within an image tend to be semantically relevant.

It can be concluded from the first observation that, al-
though the ideal graph is unavailable due to the fact that
the ground-truth labels of superpixels are unknown in ad-
vance, it is worthwhile to construct a superpixel graph with
more semantic relevance. Based on the second observation,
we can construct a descriptive graph by reducing the number
of candidate superpixels. Concretely, we impose novel cri-
teria on conventional graphs by exploiting the weak super-
vision information carefully, and develop semantic graphs.
Moreover, as shown by the third observation, we may fur-
ther enrich the superpixel graph by resorting to hypergraphs
[42]. In this paper, semantic hypergraphs are constructed
to model both intra-image and inter-image high-order rele-
vance by leveraging the weak supervision information.

The rest of the paper is organized as follows. A brief
overview of related studies is presented in Section 2. In Sec-
tion 3, the graph propagation approach to weakly-supervised
image parsing is introduced as a preliminary. Then, we
present the proposed semantic graph construction approach
and semantic hypergraph construction approach in Section
4 and Section 5, respectively. In Section 6, we show how
the aforementioned graphs and hypergraphs are combined
by using random walk. The proposed methods are evalu-
ated on two standard datasets in image parsing in Section
7. Finally, Section 8 draws the conclusions.

2. RELATED WORK
In this section, we review some studies related to the

proposed approach in the following aspects: image parsing,
weakly-supervised image segmentation, graph construction
and hypergraph construction.

2.1 Image Parsing
The image parsing problem has received wide interests

in the vision community, and numerous methods have been
proposed. Earlier studies mainly focus on modeling shapes
[33, 5]. These methods, however, can only handle images
either with a singe object or without occlusions between ob-
jects. Some other approaches are mostly based on discrim-
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inative learning techniques, e.g., conditional random field
[37], dense scene alignment [14] and deep learning [8]. All of
these algorithms require pixel-level labels for training, how-
ever, which are very expensive to obtain in practice.
Besides the aforementioned approaches, there have been

a few studies on weakly-supervised image parsing, where su-
perpixel labels are propagated along a predefined graph. As
a first attempt, [17] has proposed a bi-layer sparse coding
model for mining the relation between images and super-
pixels. The model has also been extended to a continuity-
biased bi-layer sparsity formulation [18]. In [16], a weakly-
supervised graph propagation model is developed to directly
infer the superpixel labels. Moreover, in [15], a multi-edge
graph is established to simultaneously consider both images
and superpixels, and is then used to obtain superpixel labels
through a majority voting strategy. Different from the above
approaches which pay main attention to the formulation of
the weakly-supervised learning problem, our focus is to con-
struct a superpixel graph with more semantic relevance by
using the weak supervision information carefully.

2.2 Weakly-Supervised Image Segmentation
The weakly-supervised image segmentation task is similar

to weakly-supervised image parsing, where the only differ-
ence lies in that, images are split into a training set and
a test set, and the aim is to infer the labels of test image
pixels by exploiting only the image-level labels in the train-
ing set. In the literature, [29] has proposed to handle this
task by using the Markov field aspect model. In [30], multi-
ple instance learning and multi-task learning strategies are
adopted. Multi-image model [31] and criteria on multiple
feature fusion [32] have also been studied.
What is more, recent approaches contain criteria on prob-

abilistic graphlet cut [41], weakly-supervised dual clustering
[20] and classifier evaluation [40]. However, in practice, due
to the easy access of image-level labels on photo sharing
websites such as Flickr, we assume all image-level labels are
available in this paper, which is different from the aforemen-
tioned weakly-supervised image segmentation task.

2.3 Graph Construction
A number of methods have been proposed for graph con-

struction, among which the most popular ones include sparse
linear reconstruction (L1) graph [34], ϵ-ball graph and k-
nearest neighbor (k-NN) graph. Recent studies are mostly
based on the combinations and extensions of these graphs.
As an example, [44] has proposed to handle semi-supervised
learning with a non-negative low rank and sparse graph. In
[13], a two-stage non-negative sparse representation has been
proposed for face recognition. Furthermore, a k-NN sparse
graph is applied to handle image annotation in [27].
However, different from conventional graph construction

in either supervised or unsupervised setting, constructing a
descriptive graph under weak supervision in this paper is a
novel and interesting task to handle.

2.4 Hypergraph Construction
A hypergraph is a graph in which an edge can connect

more than two vertices [4]. Similar to simple graphs, hy-
pergraphs can also be used in learning tasks [42]. For ex-
ample, [22] has proposed to handle latent semantic learning
in action recognition through sparse coding and hypergraph
regularization. Moreover, hypergraphs enable visual-textual

joint relevance learning for tag-based social image search
[11]. In [10], hypergraphs are exploited in codebook learn-
ing for image classification.

Besides the aforementioned approaches and applications,
we propose to model high-order relevance among superpix-
els in weakly-supervised image parsing by resorting to hy-
pergraphs in this paper.

3. WEAKLY-SUPERVISED IMAGE
PARSING BY GRAPH PROPAGATION

In order to handle weakly-supervised image parsing, the
proposed semantic graph and hypergraph construction ap-
proaches are based on the weakly-supervised graph propa-
gation model in [16]. As a preliminary, we begin by formally
defining the problem, and then present the formulation and
solution. In this paper, we only show the key steps here.
Please refer to [16] for detailed derivations.

3.1 Problem Definition
Given an image collection {X1, . . . , Xm, . . . , XM}, where

Xm denotes the m-th image, and its label information is
denoted by an indicator vector ym = [y1

m, . . . , yc
m, . . . , yC

m]⊤,
where yc

m = 1 if Xm has the c-th label, and yc
m = 0 other-

wise. C denotes the number of classes, and the image-level
label collection is denoted as Y = [y1, . . . , ym, . . . , yM ]⊤. Af-
ter image over-segmentation with a certain approach, e.g.,
SLIC [1], Xm is represented by a set of superpixels Xm =
{xm1, . . . , xmi, . . . , xmnm}, where nm is the number of su-
perpixels in Xm. xmi stands for the i-th superpixel of Xm,
and its corresponding label information is also denoted by
an indicator vector fmi = [f1

mi, . . . , f
c
mi, . . . , f

C
mi]

⊤, where
fc
mi = 1 if superpixel xmi has the c-th label, and fc

mi = 0
otherwise. Moreover, N =

∑M
m=1 nm denotes the total num-

ber of superpixels in the image collection, and F ∈ RN×C

denotes all the superpixel labels. In the weakly-supervised
setting, all the image labels Y are given, and the superpixel
labels F are to be inferred.

3.2 Formulation
In a traditional label propagation formulation, both the

graph and the labeled information are considered; however,
in a weakly-supervised label propagation formulation, both
the graph and the weak supervision information are taken
into account. First of all, given an N × N matrix W de-
noting the affinity graph of superpixels, we can obtain the
smoothness regularizer [3] as follows

T1 = tr(F⊤LF ) (1)

where L is a Laplacian matrix defined as L = D −W , and
D is the degree matrix of W . The smoothness regularizer
enforces similar superpixels in feature space to share similar
labels, which also resembles the idea of spectral clustering
[23]. Furthermore, the image-level supervision information
can be formulated in the following form

T2 =
∑
m

∑
c

| max
xmi∈Xm

fc
mi − yc

m| (2)

According to Eq. 2, if yc
m = 1, at least one superpixel should

interpret the label. Moreover, if yc
m = 0, no superpixels

will be assigned to that label, which is equivalent to require
max fc

mi = 0. According to such equivalence, and due to the
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fact that the image-level label yc
m can only be either 1 or 0,

Eq. 2 can be rewritten in the following form

T3 =
∑
m

∑
c

(1− yc
m)hcF

⊤qm

+
∑
m

∑
c

yc
m(1− max

xmi∈Xm

gmiFh⊤
c )

(3)

where hc is a 1×C indicator vector whose all elements, ex-
cept for the c-th element, are zeros, and qm is an N × 1 in-
dicator vector whose all elements, except for those elements
corresponding to the m-th image, are zeros. Moreover, gmi

is a 1×N vector whose elements corresponding to the i-th
superpixel in Xm are ones and others are zeros. Through
simultaneously considering Eq. 1 and Eq. 3, the final for-
mulation is shown as follows

min
F

λ tr(F⊤LF ) +
∑
m

∑
c

(1− yc
m)hcF

⊤qm

+
∑
m

∑
c

yc
m(1− max

xmi∈Xm

gmiFh⊤
c )

s.t. F ≥ 0, Fe1 = e2

(4)

where λ is a positive parameter. It should be noted that,
the equality

∑C
c=1 f

c
mi = 1 always holds due to Fe1 = e2,

where e1 = 1C×1, and e2 = 1N×1.

3.3 Solution
Eq. 4 can be efficiently solved via concave-convex pro-

gramming [38] iteratively. Let η be the subgradient of l =
[fc

m1, . . . , f
c
mi, . . . , f

c
mnm

]⊤, which is an nm×1 vector and its
i-th element is shown as follows

ηi =

{
1

nα
, fc

mi = maxj f
c
mj where xmj ∈ Xm

0, otherwise
(5)

where nα is the number of superpixels with the largest label
value. According to [38], Eq. 4 can be derived and further
relaxed as the following quadratic programming problem

min
F

λ tr(F⊤LF ) +
∑
m

∑
c

(1− yc
m)hcF

⊤qm

+
∑
m

∑
c

yc
m(1− hcβUmFh⊤

c ) + γ∥Fe1 − e2∥2

s.t. F ≥ 0

(6)

where Um is an N ×N diagonal block matrix , whose diag-
onal elements are equal to qm. β is a C × nm matrix cor-
responding to Xm and βmc = η⊤. Moreover, γ is a weight-
ing parameter. To efficiently solve Eq. 6, the non-negative
multiplicative updating procedure in [19] is adopted, which
facilitates the following element-wise updating rule

Fij = Fij ×
[2λWF + 2γe2e

⊤
1 +

∑
m

∑
c y

c
mU⊤

mβ⊤h⊤
c hc]ij

[2λDF + 2γe1e⊤
1 +

∑
m

∑
c(1− yc

m)qmhc]ij
(7)

Therefore, Eq. 4 can be solved by alternatively updating
β and F according to Eq. 5 and Eq. 7, respectively. After
convergence, the superpixel labels F are obtained as the final
results of image parsing.

4. SEMANTIC GRAPH CONSTRUCTION
Although the graph propagation method shown in the pre-

vious section is capable of inferring superpixel labels, the su-
perpixel graph W is constructed by adopting relatively sim-

pler settings. For example, the L1 graph used in [16] is built
up by reconstructing each given superpixel via the superpix-
els belonging to the images with common labels. However,
as a key factor to the final performance of weakly-supervised
image parsing (as shown by the first observation in Section
1), the superpixel graph W can be made more descriptive
by leveraging the weak supervision information carefully. In
this section, we focus on the construction process of a novel
superpixel graph, i.e., k-NN semantic graph.

4.1 Preliminaries
Based on the second observation in Section 1, we pro-

pose to construct graphs with more semantic relevance by
reducing the number of candidate superpixels. To begin
with, we denote all the feature vectors of the superpixels as
Z ∈ Rd×N , where d is the dimensionality of a feature vector.
Furthermore, based on the image-level labels, all the super-
pixels belonging to images with the c-th label is denoted as
Zc ∈ Rd×Nc . According to the illustrative examples in Fig.
1, given a superpixel xmi (belonging to image Xm) whose
ground-truth label is c and whose corresponding feature vec-
tor is denoted as pmi, using Zc as candidate superpixels can
provide better results than using Z or other Zj , where j ̸= c.

The aforementioned fact can be easily verified due to the
following reasons: 1) Since all the superpixels which belong
to Z but not Zc are semantically irrelevant to pmi, it is
beneficial to represent pmi by excluding these superpixels,
and thus using Zc may yield better results than Z; 2) Zc

contains more semantically relevant superpixels and fewer
irrelevant superpixels to pmi than other Zj , where j ̸= c.
Therefore, our aim is to find the most appropriate candidate
superpixels for each superpixel.

Notably, this is a paradox, since we can precisely obtain
Zc according to the ground-truth label of xmi (i.e., c) and
thus provide a descriptive graph. However, the superpixel
label c is to be inferred and unknown in advance. In order
to handle this problem, we develop k-NN semantic graphs,
which is based on the proposed criteria in selecting Zc in
conventional k-NN graphs.

4.2 k-NN Semantic Graph
In this subsection, we present the construction process of

k-NN semantic graphs. Since using Z as candidate super-
pixels is always a suboptimal choice, we focus on selecting
candidate superpixels from Zj where j ∈ {1, . . . , C}. Given
a superpixel xmi (belonging to image Xm) whose feature
vector is pmi, we begin by denoting Sj as the set of k-NN
superpixels of pmi in Zj , and Scp

j as the set of k-NN super-
pixels in Zcp

j , where Zcp
j is the complementary set of Zj , i.e.,

Zcp
j = Z\Zj . Based on these notations, we select the k-NN

superpixels of pmi according to the following criterion.

min
j,Sj

k∑
a=1

k∑
b=1

sim(Sja, S
cp
jb )

s.t. Sja ∈ Sj , Scp
jb ∈ Scp

j , yj
m = 1, j ∈ {1, . . . , C}

(8)

where Sja and Scp
jb are superpixels belonging to sets Sj and

Scp
j , respectively. Moreover, sim(·, ·) denotes a similarity

measure of two feature vectors of superpixels. According to
Eq. 8, we select Sj as the k-NN superpixels of pmi, where
the sum of pairwise similarity between superpixels in Sj and
Scp
j is minimized.
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Eq. 8 is optimized in two steps: 1) Enumerate Sj for all
possible values of j which satisfy yj

m = 1 (i.e., all labels of
the image containing the given superpixel pmi); 2) Select
the specific Sj which minimizes Eq. 8 (i.e., the sum of pair-
wise similarity) as the final result. Solving Eq. 8 requires
O(CN + Ck2) for a single superpixel. Since C and k are
much smaller than N , the complexity is linear with respect
to N (i.e., the total number of superpixels).
As a consequence, after selecting neighbors for each super-

pixel in the entire image repository by reducing the number
of candidate superpixels based on Eq. 8, the affinity graph
W is constructed. We further assign W = 1

2
(W + W⊤) to

ensure its symmetry, and use it as the k-NN semantic graph
in this paper.

4.3 Interpretation
Eq. 8 makes sense due to the following reasons. Generally,

superpixels with the same labels tend to be visually similar,
whereas the similarity between superpixels belonging to dif-
ferent classes tends to be small. Through minimizing the
pairwise similarity between superpixels in Sj and Scp

j , the
superpixels in the selected Sj are likely to have the same
label with pmi.
For example, given an image Xm with labels ‘grass’ and

‘bird’, we denote a ‘grass’ superpixel and a ‘bird’ superpixel
in Xm as pgrs and pbrd, respectively. Moreover, candidate
superpixels Zgrs, Zcp

grs, Zbrd and Zcp
brd are defined accord-

ingly. Given pgrs, since ‘grass’ superpixels may appear as
neighbors in both Zbrd (superpixels in ‘bird’ images) and
Zcp

brd (superpixels in ‘non-bird’ images), the pairwise similar-
ity between superpixels in Sbrd and Scp

brd is relatively large.
In contrast, the pairwise similarity between superpixels in
Sgrs and Scp

grs is small since ‘grass’ superpixels are absent in
Scp
grs. Therefore, the selected set of neighbors for pgrs is Sgrs

but not Sbrd. Moreover, the same applies to pbrd, where Sbrd

is chosen as its k-NN superpixels.
It should be noted that, although we focus only on con-

structing k-NN semantic graphs in this paper, the idea of
constructing a superpixel graph with more semantic rele-
vance by reducing the number of candidate superpixels is
also applicable to other types of graphs, e.g., L1 graphs.
What is more, Eq. 8 is not the only choice for constructing
k-NN semantic graphs, and can be readily substituted by
other feasible criteria.
More notably, our aim is to show that reducing the num-

ber of candidate superpixels is beneficial. We have con-
ducted experiments and observed that L1 semantic graph
(with some criteria) performs better than original L1 graph.
However, constructing L1 graph is time-consuming. There-
fore, our experiments are mainly based on k-NN (semantic)
graphs, which are more efficient to construct.

5. SEMANTIC HYPERGRAPH
CONSTRUCTION

Besides constructing semantic graphs which only contain
second-order relevance, we also model high-order semantic
relevance by resorting to hypergraphs (as shown by the third
observation in Section 1). We begin by presenting some
notations along with our motivation in exploiting hyper-
graphs. After that, we introduce the proposed approaches
to establishing intra-image hyperedges and inter-image hy-

peredges, respectively. Finally, we discuss the complemen-
tariness among the semantic graphs and hypergraphs.

5.1 Notation and Motivation
A hypergraph G(A, E) consists of a vertex set A and a

hyperedge set E [42]. Each hyperedge e is a subset of the
vertex set A, where the weight corresponding to the hy-
peredge e is denoted as w(e). The degree of a vertex a is
defined as d(a) =

∑
{e∈E|a∈e} w(e). Moreover, the incidence

matrix H is an |A| × |E| matrix, whose entry H(a, e) = 1
if a ∈ e, and H(a, e) = 0 otherwise. The degree of a
hyperedge e is defined as δ(e) = |e|. Therefore, we have
d(a) =

∑
e∈E w(e)H(a, e) and δ(e) =

∑
a∈A H(a, e). Note

that, the hyperedge weight w(e) in this paper is defined as

w(e) =
1

|e|
∑

a1∈e,a2∈e

sim(a1, a2) (9)

where sim(·, ·) denotes a predefined similarity measure of two
vertices. Based on these definitions, we define the Laplacian
matrix of the aforementioned hypergraph as follows

Lh = Da −HWeD
−1
e H⊤ (10)

where Da, De, and We denote the diagonal matrices of the
vertex degrees, the hyperedge degrees, and the hyperedge
weights of the hypergraph, respectively.

According to Eq. 10, the affinity graph can be defined as
Wh = HWeD

−1
e H⊤, and thus a hypergraph can be viewed

as a graph with pairwise similarities. It can be observed after
some derivation that, for any two vertices a1 ∈ e and a2 ∈ e,

the affinity between them in Wh is w(e)
δ(e)

. Consequently, the

high-order relevance among vertices in a hypergraph can be
decomposed into a set of second-order relevance (as shown
in Wh). With this in mind, the hypergraph can be viewed
to have a cluster-based structure partitioned by hyperedges
(if these hyperedges do not overlap), and we present two
types of cluster-based structures in weakly-supervised image
parsing in the next two subsections.

5.2 Intra-Image Hyperedges
We begin by analyzing the cluster-based structure within

a single image. Intuitively, superpixels that are both visu-
ally similar and spatially adjacent tend to be semantically
relevant. In order to achieve this goal, we establish a graph
Wm for the image Xm whose vertices correspond to super-
pixels of Xm, and only retain the pairwise visual similarities
of spatially adjacent superpixels on Wm. Then, the cluster-
based structure is learned on Wm by spectral clustering [23],
which can be viewed as a graph partitioning task [24]. The
spectral clustering algorithm is summarized as follows:

1. Find K smallest nontrivial eigenvectors v1, . . . , vK of
the Laplacian matrix Lm = Dm − Wm, where Dm is
the degree matrix of Wm.

2. Form E = [v1, . . . , vK ], and normalize each row of E
to have unit length.

3. Perform K-means clustering on the vectors Ei. (where
i = 1, . . . , nm) to partition the nm superpixels into K
clusters.

After performing spectral clustering for each image, su-
perpixels belonging to the same cluster form an intra-image
hyperedge. By stacking all the hyperedges into a single in-
cidence matrix H, we can obtain the Laplacian matrix ac-
cording to Eq. 10. In order to state conveniently, we denote
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Intra-Image HyperedgesOriginal Image Original Image Intra-Image Hyperedges

Figure 2: Illustration of some intra-image hyper-
edges. Superpixels in the area of the same color
share an intra-image hyperedge. Please note that
an area generally contains more than one superpixel,
and that the number of clusters here is set to 5.

the resultant hypergraph as HGintra. Some example results
are shown in Fig. 2.
It should be noted that, spatial adjacency has already

been utilized in image segmentation in the literature. For
example, all pairwise similarities between spatially adjacent
superpixels are retained in [20]. However, such a setting may
cause all the superpixel labels to be similar, which may not
be a good choice.

5.3 Inter-Image Hyperedges
Besides intra-image hyperedges, there is a second type of

cluster-based structures, i.e., inter-image hyperedges. Recall
that in Subsection 4.1, we define Zj ∈ Rd×Nj to be all the su-
perpixels belonging to images with the j-th label. Moreover,
the necessary condition of two superpixels being semanti-
cally relevant is that, the two images to which they belong
have at least one label in common. Therefore, instead of
discovering the cluster-based structure in Z (i.e., all the su-
perpixels), we focus on the subsets Zj , where j ∈ {1, . . . , C}.
The approach to learning inter-image hyperedges consists

of two steps: 1) Establish an Nj×Nj visual similarity graph
Wj for all superpixels in Zj ; 2) Patition Wj by spectral
clustering [23].
Similarly with Subsection 5.2, after performing spectral

clustering for each category, superpixels belonging to the
same cluster form an inter-image hyperedge. By stacking
all the hyperedges into a single incidence matrix H, we can
obtain the Laplacian matrix according to Eq. 10. We denote
the resultant hypergraph as HGinter.
Please note that, rather than using the full graph Wj ,

we observe in the experiments that the k-NN version of Wj

results in better performance.

5.4 Discussion
We discuss the complementariness between HGintra and

HGinter here. Moreover, the k-NN semantic graph proposed
in Section 4 is also taken into account.

• HGintra vs HGinter. HGinter is based on visual ap-
pearance only, while HGintra leverages the spatial ad-
jacency information in a single image.

• k-NN semantic graph vs HGintra. Similarly with the
above, k-NN semantic graph and HGintra exploit vi-
sual appearance and spatial adjacency, respectively.

• k-NN semantic graph vsHGinter. There may be errors
in predicting candidate superpixels in k-NN semantic
graph, and thus the neighbors of a given superpixel
are not really semantic relevant ones. Fortunately, the
cluster-based structure learned in HGinter may help
reduce the errors caused by k-NN semantic graph.

Therefore, the aforementioned three graphs (hypergraphs)
are complementary with each other, and thus the combina-
tion of them can yield better parsing performance.

6. GRAPH COMBINATION BY RANDOM
WALK

Currently, we have proposed three semantic graphs (hy-
pergraphs) in total, i.e., k-NN semantic graph, HGintra and
HGinter. As discussed in the previous section, these graphs
are complementary with each other, and thus it is beneficial
to combine them for image parsing. Hence, in this section,
we present an approach to combine these graphs based on
random walk. Recall that according to Eq. 10, the affinity
graph is defined as Wh = HWeD

−1
e H⊤, and thus a hyper-

graph can be viewed as a graph with pairwise similarities.
In order to state clearly, assume that we have S undi-

rected and symmetric graphs Gs = (A,Ws), where s =
1, . . . , S. Each element Ws(a, b) in the N × N similarity
matrix Ws measures the similarity between superpixels xa

and xb on the s-th graph. It should be noted that, these
graphs share the same set of vertices while having differ-
ent similarity matrices. With respect to each graph Gs, as
in [6], for the vertex a ∈ A ,we denote its degree on Gs

as ds(a) =
∑

b Ws(a, b). Furthermore, the volume of graph
Gs is defined as vols A =

∑
a∈A ds(a) =

∑
a∈A,b∈A Ws(a, b).

The natural random walk on Gs can be defined as follows.
That is, for any two vertices a and b on Gs, their transition
probability on Gs is

p(a → b|Gs) = Ws(a, b)/ds(a) (11)

and the stationary probability of a on Gs is

p(a|Gs) = ds(a)/ vols A (12)

Denote p(Gs) (where s = 1, . . . , S) as the prior probabilities
of the random walker choosing the graph Gs, and we have
p(Gs) ≥ 0 and

∑
s p(Gs) = 1. Therefore, the posterior

probability in selecting the graph Gs at vertex a is

p(Gs|a) =
p(Gs, a)∑
s p(Gs, a)

=
p(a|Gs)p(Gs)∑
s p(a|Gs)p(Gs)

(13)

For any two vertices a and b, their transition probability on
multiple graphs can be computed as

p(a → b) =
∑
s

p(a → b|Gs)p(Gs|a) (14)

In addition, the stationary probability of vertex a on multi-
ple graphs is computed as

p(a) =
∑
s

p(a|Gs)p(Gs) (15)

Finally, according to [9], the combined Laplacian matrix L̂
of multiple graphs is defined as follows

L̂ = Π− ΠP + P⊤Π

2
(16)
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where P denotes the transition probability matrix with its
elements being p(a → b), and Π is the diagonal stationary
probability matrix with its diagonal elements being p(a).

7. EXPERIMENTS
In this section, we evaluate the proposed semantic graphs

and hypergraphs in weakly-supervised image parsing. We
begin by describing the experimental setup and then com-
pare our method with other closely related methods. More-
over, the parameter setting details are presented.

7.1 Experimental Setup
We conduct experiments on two standard datasets: PAS-

CAL VOC’07 (PASCAL for short) [7] and MSRC-21 [26].
Both datasets contain 21 different classes and are provided
with pixel-level labels, which are used to evaluate the per-
formance measured by classification accuracy. In weakly-
supervised image parsing, we assume all the image-level la-
bels are known for both training and test set, i.e., 632 images
in PASCAL dataset and 532 images in MSRC-21 dataset
[25]. Moreover, we adopt SLIC [1] to obtain superpixels for
each image, and represent each superpixel by the bag-of-
words model while using SIFT [21] as the local descriptor.
Histogram intersection kernel [2] is adopted to measure the
similarity between two feature vectors of superpixels. To
present fair comparisons, we adopt the same parameters for
the graph propagation model shown in Eq. 4. Furthermore,
the setting of parameters in constructing semantic graphs
and hypergraphs will be investigated in Subsection 7.3.
Notably, besides computing the parsing accuracy on the

entire image repository, we also measure the semantic rele-
vance captured by a graph with a percentage value

percentage =
#(adjacent superpixels with the same label)

#(adjacent superpixels)
(17)

where the term adjacent superpixels denotes a pair of super-
pixels whose similarity in a graph is non-zero.
Apart from comparing with the state-of-the-arts [17, 16],

we mainly focus on the comparisons with some closely re-
lated baselines. For example, to demonstrate the effective-
ness of the proposed k-NN semantic graph (k-NN SG for
short), we compare with the following two baselines: 1) k-
NN original graph (k-NN OG), where all superpixels are
candidates for a given superpixel; 2) k-NN label intersection
graph (k-NN LIG), where all the candidate superpixels be-
long to images which have at least one common label with
the image containing the given superpixel. Our aim is to
show that it is beneficial to reduce the number of candidate
superpixels in establishing superpixel graphs.
In addition, since HGintra exploits the spatial adjacency

information, we compare it with an adjacency graph Gadj ,
where all pairwise similarities between spatially adjacent su-
perpixels are retained [20]. We also compare HGinter with
baseline k-NN graphs, since HGinter is based on a parti-
tion of k-NN visual similarity graphs as shown at the end of
Subsection 5.3. Finally, we enumerate all the possible graph
combination strategies to demonstrate the complementari-
ness among the proposed semantic graphs and hypergraphs.

7.2 Empirical Results
The per-class accuracies on PASCAL dataset and MSRC-

21 dataset are listed in Table 1 and Table 2, respectively.

Table 3: Percentages (%) of semantically relevant
superpixels in different graphs along with the corre-
sponding mean parsing accuracies (%) on PASCAL
dataset.

Graphs Percentage Accuracy

k-NN OG 11 19
k-NN LIG 34 37
k-NN SG 38 42
HGinter 32 41
Gadj 43 n/a

HGintra 49 n/a

Table 4: Percentages (%) of semantically relevant
superpixels in different graphs along with the corre-
sponding mean parsing accuracies (%) on MSRC-21
dataset.

Graphs Percentage Accuracy

k-NN OG 33 65
k-NN LIG 52 65
k-NN SG 59 73
HGinter 51 70
Gadj 50 n/a

HGintra 66 n/a

Note that we have numbered the compared methods in these
two tables for convenience.

It can be observed that trends on both datasets are sim-
ilar, and that the results achieved by (11) are significantly
better than the state-of-the-arts [17, 16]. In addition, we
have the following findings based on the results in Table 1
and Table 2:

• (3) vs {(1), (2)}: k-NN SG outperforms the other two
baselines, and thus it is beneficial to reduce the number
of candidate superpixels in graph construction.

• (5) vs (1), (8) vs (6), (10) vs (3): HGintra takes into
account the spatial adjacency information of superpix-
els, which is complementary to the visual appearance.
Therefore, combiningHGintra with graphs considering
only visual appearance can improve the performance.

• (5) vs (4), (8) vs (7): Gadj retains the similarity of all
spatially adjacent superpixels, which may cause all the
superpixel labels to be similar after label propagation.
In contrast to such an undesirable setting, HGintra

only impose regularization on superpixels which are
both spatially adjacent and visually similar.

• (6) vs (1): Although HGinter is based on a partition of
k-NN visual similarity graphs, the high-order semantic
relevance is a key factor to the parsing performance.

• (8) vs (6), (9) vs {(3), (6)}, (10) vs (3), (11) vs {(8),
(9), (10)}: It can be observed that the proposed k-
NN SG,HGintra andHGinter are complementary with
each other, which is in correspondence with the discus-
sion in Subsection 5.4.

Furthermore, we report the semantic relevance captured
by different graphs along with the corresponding mean pars-
ing accuracy on PASCAL dataset and MSRC-21 dataset in
Table 3 and Table 4, respectively. By comparing among
k-NN OG, k-NN LIG and k-NN SG, we observe that, gen-
erally, the more semantic relevance captured by the graph,
the better the parsing accuracy is. However, although the
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Table 1: Accuracies (%) of the proposed semantic graphs and hypergraphs for individual classes on PASCAL
dataset, in comparison with other methods. The last column shows the mean accuracy over all classes.
Methods planebikebirdboatbottlebus car cat chair cowtabledoghorsemotorpersonplant sheep sofa train tv bkgdmean

bi-layer sparse coding [17] 24 25 40 25 32 35 27 45 16 49 24 32 13 25 56 28 17 16 33 18 82 32
L1 graph+χ2 distance graph [16] 28 20 52 28 46 41 39 60 25 68 25 35 17 35 56 36 46 17 31 20 65 38
(1) k-NN OG 20 16 16 16 12 16 14 15 15 22 11 13 14 13 25 17 24 16 11 20 76 19
(2) k-NN LIG 41 20 58 41 48 30 38 44 31 42 31 36 28 26 37 30 50 25 42 40 47 37
(3) k-NN SG 85 55 87 45 42 31 34 57 21 81 23 16 6 11 42 31 72 24 49 40 41 42
(4) k-NN OG+Gadj 28 24 9 14 13 19 22 12 18 14 8 12 9 12 59 14 17 15 12 27 76 21
(5) k-NN OG+HGintra 30 35 11 16 15 21 26 11 17 20 13 16 9 12 57 22 18 16 16 26 74 23
(6) HGinter 56 21 71 57 44 40 43 62 16 76 19 45 17 23 46 30 48 10 49 38 53 41
(7) HGinter+Gadj 57 17 72 49 53 42 55 54 18 64 23 38 23 30 45 24 48 17 41 27 54 41
(8) HGinter+HGintra 62 18 77 56 58 44 54 51 15 65 26 41 28 35 46 29 46 22 48 34 50 43
(9) k-NN SG+HGinter 76 34 89 55 36 41 41 62 21 80 20 25 17 21 48 19 77 20 58 34 46 44
(10) k-NN SG+HGintra 76 62 79 49 49 39 49 53 26 73 23 23 12 15 48 40 55 32 47 42 38 44
(11) k-NN SG+HGinter+HGintra 77 48 87 50 56 48 44 60 27 76 18 38 25 31 52 38 59 31 51 34 41 47

Table 2: Accuracies (%) of the proposed semantic graphs and hypergraphs for individual classes on MSRC-21
dataset, in comparison with other methods. The last column shows the mean accuracy over all classes.

Methods bldggrass tree cowsheep skyplanewater face carbikeflower signbirdbookchair roadcatdogbodyboatmean

L1 graph+χ2 distance graph [16] 70 92 49 10 10 83 36 82 62 20 52 98 88 48 98 70 75 95 76 43 23 61
(1) k-NN OG 74 94 64 29 12 94 36 75 65 40 81 96 83 56 99 77 78 93 73 34 17 65
(2) k-NN LIG 71 92 61 25 9 92 33 75 67 39 82 98 90 54 98 85 73 99 87 32 10 65
(3) k-NN SG 49 82 45 59 51 90 78 68 66 68 98 99 94 84 99 99 48 99 98 30 20 72
(4) k-NN OG+Gadj 74 92 67 36 18 92 47 74 71 50 84 96 88 57 99 81 77 96 78 32 25 68
(5) k-NN OG+HGintra 75 94 63 55 28 93 45 74 72 59 80 96 86 63 98 86 77 97 84 37 18 70
(6) HGinter 70 87 72 25 13 91 81 79 54 70 80 97 86 61 98 92 68 99 92 50 9 70
(7) HGinter+Gadj 70 88 74 20 14 91 82 78 77 69 82 97 88 58 98 93 65 98 93 44 15 71
(8) HGinter+HGintra 72 88 76 30 18 93 84 80 80 75 81 97 90 61 98 92 67 98 94 49 19 73
(9) k-NN SG+HGinter 67 88 59 45 38 93 82 75 81 78 95 98 95 85 99 98 62 99 98 34 16 75
(10) k-NN SG+HGintra 53 84 46 63 62 89 72 67 78 69 96 99 90 84 98 97 53 99 98 27 20 74
(11) k-NN SG+HGinter+HGintra 71 89 60 64 57 93 90 76 90 85 95 99 95 83 99 99 66 99 99 34 25 80

semantic relevance captured by k-NN LIG is much more
than k-NN OG, there is nearly no improvement in parsing
accuracy on MSRC-21 dataset. It may be due to the fact
that k-NN LIG only discards the adjacencies of superpixels
whose corresponding images have no common labels. These
adjacencies do not affect the parsing accuracy much, since
the inferred label of a superpixel is constrained to be one
of the labels of its corresponding image. In contrast, k-NN
SG further improves the percentage of semantically adjacent
superpixels, which is beneficial for the final performance.
Moreover, although HGinter is based on a partition of

k-NN visual similarity graphs, it contains more semantic
relevance than k-NN OG and thus performs better. Besides,
by learning the cluster-based structure within each image,
HGintra obtains more semantic relevance than Gadj , where
some semantically irrelevant adjacencies are discarded. It
should be noted that, since neither HGintra nor Gadj models
the relevance among images, they cannot be directly used in
image parsing.
Notably, the criterion shown in Eq. 8 is to select candidate

superpixels belonging to images containing a specific label,
which can be viewed as initial predictions for all superpixel
labels, although these predictions are not used to evaluate
the parsing accuracy directly. However, we can still calculate
an accuracy for these predictions. We empirically discover
that these predictions achieve relatively lower results. For
example, on MSRC-21 dataset, the accuracy achieved by
initial predictions in constructing k-NN SG is 64%, whereas
the accuracy of label propagation with k-NN SG is 73%.
The result shows the effectiveness of the whole framework.
Moreover, some example results for image parsing by graph
propagation using (11) in comparison with the ground-truth
on MSRC-21 dataset are shown in Fig. 3.

However, the proposed method may fail in several cases.
For example, the ‘boat’ category in MSRC-21 dataset per-
forms relatively poor, since the number of ‘boat’ superpixels
is small, and the intra-class variance of the ‘boat’ category is
large. For another example, it is difficult to distinguish be-
tween the ‘face’ category and the ‘body’ category in MSRC-
21 dataset, since images containing label ‘face’ generally con-
tains label ‘body’. As we only know the image-level label,
the difference between these two labels is small. Moreover,
the visual appearance of these two categories is similar (since
both of them contain human skins), and thus the selection
of candidate superpixels may fail sometimes.

Besides, we also conduct qualitative experiments on NUS-
WIDE dataset. It should be noted that, NUS-WIDE dataset
does not contain pixel-level labels for quantitative evalua-
tion. [16] only evaluates the parsing results qualitatively.
We have conducted experiments on a subset of NUS-WIDE
dataset and qualitatively observed that our methods gener-
ally perform well. In order to allow for quantitative evalu-
ation, we plan to manually annotate some pixel-level labels
and conduct thorough experiments in the future.

7.3 Parameter Setting
There are four parameters in constructing the proposed se-

mantic graphs and hypergraphs: 1) the number of neighbors
k1 in k-NN SG; 2) the number of clusters K2 in HGintra;
3) the number of neighbors k3 in visual similarity graph
Wj for constructing HGinter; 4) the number of clusters K4

in HGinter. Note that subscripts are added to distinguish
among these parameters. Moreover, since the sizes of visual
similarity graphs Wj ∈ R|Zj |×|Zj | (where j ∈ {1, . . . , C})
vary a lot among different classes in constructing HGinter,
we empirically set K4 = |Zj |/k3 to allow for a flexible choice
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Figure 3: Some example results for image parsing by graph propagation using (11) k-NN SG+HGinter+HGintra

(i.e., our result) in comparison with the ground-truth on MSRC-21 dataset.

of K4 for different classes. Hence, we focus on the setting
of k1, K2 and k3, where the parsing accuracies by varying
these parameters on MSRC-21 dataset are shown in Fig. 4.
We have the following observations according to Fig. 4:
• As k1 increases, the performance generally decreases,

which may be due to the fact that taking into account
more neighbors also incurs more semantically irrele-
vant superpixels. Hence, we set k1 to a relatively small
value in the experiments, i.e., k1 = 20.

• K2 is the number of partitions in an image, as shown
in Fig. 2. A small K2 enforces the labels of most
superpixels to be similar, whereas a large K2 makes
superpixels within an image disjoint with each other,
neither of which are good ideas. Consequently, we set
K2 = 5 to exploit the spatial adjacency information
effectively.

• Due to similar reasons with k1, k3 should not be too
large, either. Although there are better results when
k3 is set to some large value (e.g., k3 = 80), the results
are unstable as k3 goes large. In the experiments, we
adopt k3 = 20 in order to obtain reliable results.

Please note that we use the same parameters as discussed
above on PASCAL dataset.

8. CONCLUSIONS
Based on the observations listed in Section 1, it is impor-

tant to construct superpixel graphs with more semantic rele-
vance in order to achieve better results in weakly-supervised
image parsing. Since it is difficult to directly train a classifier
(i.e., modeling the relationship between visual features and
labels of superpixels) in weakly-supervised learning prob-
lems, it is an interesting and important issue to establish
descriptive graphs in weakly-supervised setting by exploit-
ing the weak supervision information carefully.
Moveover, we empirically observe that it is beneficial to

reduce the number of candidate superpixels and to explore
high-order semantic relevance. Therefore, we investigate in
this paper the semantic graph and hypergraph construction.
As shown in the experiments, the proposed semantic graphs
and hypergraphs perform significantly better than conven-
tional graphs. What is more, due to the complementariness
among these graphs, the combination of them yields even
more promising results. More notably, as a general frame-

work, the proposed approach is suitable for other weakly-
supervised learning tasks besides image parsing.
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